【DSE數學】點可以唔識數學必出嘅AS同GS?一文幫你清concept!

數學從來都不是一朝一夕就能精通的科目,就算你背熟了公式,但你不懂怎麼運用,看到題目時,還是會一頭霧水!所以清concept是超級重要,這一次先講AS(等差數列)和GS(等比數列),每年必定有ASGS的題目,所以不能不知道它們是什麼!一文幫你精通ASGS,還有練習題目,讓你融會貫通~

目錄

等差數列 Arithmetic sequence

求和法 Summation of arithmetic sequence

等比數列 Geometric sequence

求和法 Summation of geometric sequence

無限項之和公式 Sum to infinity

總結

無論想補底,想清Concept,定係aim 5**,可以 <<查看更多>>

等差數列 Arithmetic sequence (AS)

首先要知道最基本的符號/公式!

Tn = 第n項 nth term/ 數列中的通項 General term

a = 首項 First term

d = 公差 Common difference

(** d的數字必須是後項減前項! **)

T1 = a, T2 = a + d, T3 = a + 2d, T4 = a + 3d, T5 = a + 4d, 如此類推

(** a 和 d 可以是正數或負數 **)

數列的通項 general term

Tn = a + (n-1) d

以2020 P2 Q35為例,練習一下找 d!

Question

If a > 0, which of the following are arithmetic sequences?

I. log a-3, log a, log a5

II. 8-4a, 9-5a, 10-6a

III. cos(90-a)°, cos90°, cos(90+a)°

Option

a. I and II only

b. I and III only

c. II and III only

d. I, II and III

不要偷看答案喔!做完再往下看答案~ Solution

Solution

For I,

log a – log a-3

= log a – (-3) log a

=4 log a

Log a5 – log a

= 5 log a – log a

= 4 log a

Both d = 4 log a, so I is AS.

For II,

(9 – 5a) – (8 – 4a)

= 9 – 5a – 8 + 4a

= 1 – a

(10 – 6a) – (9 – 5a)

=10 – 6a – 9 + 5a

= 1 – a

Both d = 1 – a, so II is AS.

For III,

cos 90° – cos (90 – a)°

= 0 – sin a°

= – sin a°

cos (90 + a)° – cos 90°

= – sin a° – 0

= – sin a°

Both d = – sin a°, so III s AS.

ANS = D (I, II and III)

想再看看公式

再來一條練習題目!2018 P2 Q12

Question

Let an be the n th term of a sequence. If a3 = 21, a6 = 89 and a n+2 = an + a n+1 for any positive integer n, then a1 =

Option

a. 8

b. 13

c. 34

d. 55

Solution

a6 = a4+2

89 = a4 + a5

89 = a4 + a4 + a3

89 = 2a4 + 21

a4 = 34

a4 = a2 + a3

32 = a2 + 21

a2 = 13

a3 = a1 + a2

21 = a1 + 13

a1 = 8

ANS = A (8)

**當然面對MC題目, 只要sub answer就可以快速解決!

想再看看公式

無論想補底,想清Concept,定係aim 5**,可以 <<查看更多>>

求和法 Summation of arithmetic sequence

Sn = 首n項的總和Sum

看看2019 P1 Q16b,AS有時候會和其他課題一起出題。

因為重點想讓同學們練習AS,所以先提供 (a)的答案! 分別是 9 和 27。

The least value of n is 60.

搞清AS後,繼續看下去,看看GS的公式~ 

等比數列 Geometric sequence

首先要知道最基本的符號/公式!

等比數列基本功

a = 首項 First term

r = 公比 Common ratio

(** r的數字必須是後項除前項! **)

T1 = ar, T2 = ar1, T3 = ar2, T4 = ar3, T5 = ar4, 如此類推

等比數列通項 General form

Tn = arn-1

求和法 Summation of geometric sequences

無限項之和公式 Sum to infinity

試試2016 P2 Q36

Solution

想再看看公式

再來一條2020年的Paper 1 題目 Q16

考評局第五級示例

無論想補底,想清Concept,定係aim 5**,可以 <<查看更多>>

AS GS 計算機 Program

有興趣加AS GS 的計算機program,可以點點這裡 ->>>>> ASGS-Program

對於計算時或check數時會有幫助!

回到目錄

總結

其實ASGS不只會單獨出題,有時還會跨課題出題,例如Inequalities不等式, Probabilities概率, Compound interest複利息,而且每年Paper1和2必定有ASGS的題目,所以必須要搞清楚ASGS的公式和怎麼運用!這裡沒有講太多關於跨課題的題目例子,先學好基本的東西~

無論想補底,想清Concept,定係aim 5**,可以 <<查看更多>>

想提昇英語能力?為你推薦香港熱門英文導師!

Close Menu